Hyperbolic Distribution Problems on Siegel 3-folds and Hilbert Modular Varieties
نویسندگان
چکیده
We generalize to Hilbert modular varieties of arbitrary dimension the work of W. Duke [14] on the equidistribution of Heegner points and of primitive positively oriented closed geodesics in the Poincaré upper half plane, subject to certain subconvexity results. We also prove vanishing results for limits of cuspidal Weyl sums associated with analogous problems for the Siegel upper half space of degree 2. In particular, these Weyl sums are associated with families of Humbert surfaces in Siegel 3-folds and of modular curves in these Humbert surfaces. To appear in Duke Math J.
منابع مشابه
Hyperbolicity, automorphic forms and Siegel modular varieties
We study the hyperbolicity of compactifications of quotients of bounded symmetric domains by arithmetic groups. We prove that, up to an étale cover, they are Kobayashi hyperbolic modulo the boundary. Applying our techniques to Siegel modular varieties, we improve some former results of Nadel on the non-existence of certain level structures on abelian varieties over complex function fields.
متن کاملGALOIS REPRESENTATIONS MODULO p AND COHOMOLOGY OF HILBERT MODULAR VARIETIES
The aim of this paper is to extend some arithmetic results on elliptic modular forms to the case of Hilbert modular forms. Among these results let’s mention : − the control of the image of the Galois representation modulo p [37][35], − Hida’s congruence criterion outside an explicit set of primes p [21], − the freeness of the integral cohomology of the Hilbert modular variety over certain local...
متن کاملThe Chowla–Selberg Formula and The Colmez Conjecture
In this paper, we reinterpret the Colmez conjecture on the Faltings height of CM abelian varieties in terms of Hilbert (and Siegel) modular forms. We construct an elliptic modular form involving the Faltings height of a CM abelian surface and arithmetic intersection numbers, and prove that the Colmez conjecture for CM abelian surfaces is equivalent to the cuspidality of this modular form.
متن کاملChowla-selberg Formula and Colmez’s Conjecture
In this paper, we reinterpret the Colmez conjecture on Faltings’ height of CM abelian varieties in terms of Hilbert (and Siegel) modular forms. We construct an elliptic modular form involving Faltings’ height of a CM abelian surface and arithmetic intersection numbers, and prove that Colmez’s conjecture for CM abelian surfaces is equivalent to the cuspitality of this modular form.
متن کاملHecke Operators on Hilbert–siegel Modular Forms
We define Hilbert–Siegel modular forms and Hecke “operators” acting on them. As with Hilbert modular forms (i.e. with Siegel degree 1), these linear transformations are not linear operators until we consider a direct product of spaces of modular forms (with varying groups), modulo natural identifications we can make between certain spaces. With Hilbert–Siegel forms (i.e. with arbitrary Siegel d...
متن کامل